Radiométrie & Photométrie

0- Grandeurs radiométriques & photométriques

Les grandeurs **radiométriques** caractérisent un rayonnement de lumière dans les unités physiques usuelles **W**, **W.sr**⁻¹, **W.m**⁻². Mesures par un détecteur à réponse \approx indépendante de λ .

Les grandeurs photométriques caractérisent un rayonnement comme s'il était vu par un observateur humain « standard ».

La réponse de l'œil dépend spécifiquement de λ ; limitée au visible \approx [400 nm; 750 nm] \rightarrow nécessité d'utiliser les unités spécifiques de la photométrie **lumen, candela, lux** etc.

1- Flux énergétique et lumineux : F_e en W, F_I en Im (lumen) Correspondance entre les systèmes d'unités

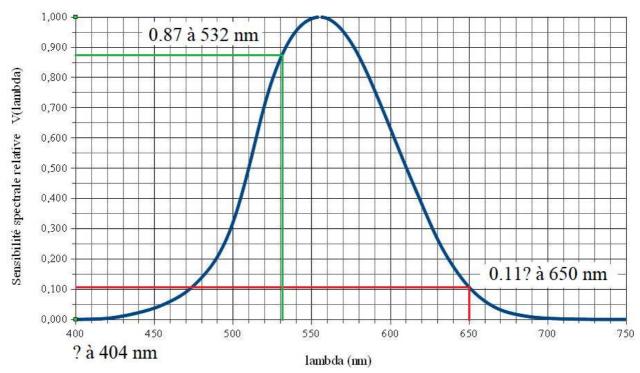
1.1- Flux énergétique Fe et Flux lumineux FI en lumen(ou lm)

 $\mathbf{F_e}$ = « débit » d'énergie par unité de temps transportée par le rayonnement $J.s^{-1} \equiv W \rightarrow F_e$ « puissance optique » en watt .

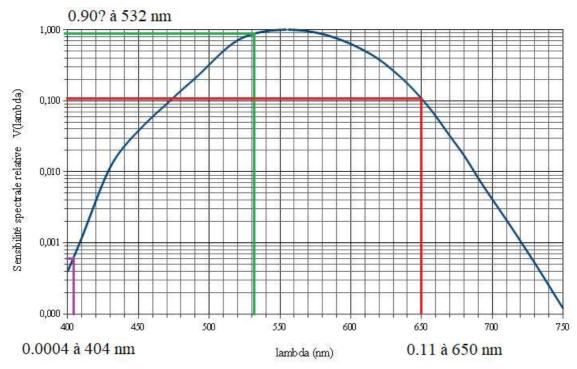
 \mathbf{F}_1 = mesure de la sensation visuelle d'un flux de lumière visible par un œil humain, en lumen (lm).

1.2- Influence de l'œil humain :

raccordement entre unités radiométriques et photométriques


Caractérisation de la vision d'un œil standard

- L'observation d'un rayonnement se traduit pour un être humain par un ensemble de stimulations visuelles interprétées par le cerveau en termes de couleurs (analyse des impressions colorées = colorimétrie) ou de niveau sur une « échelle de gris » (analyse de la quantité de rayonnement = photométrie).
- Ces impressions dépendent du sujet, de son âge, de sa fatigue, des conditions d'éclairage actuelles et antérieures (éblouissement, accoutumance) → la CIE (Commission Internationale de l'Eclairage) a défini un « observateur standard » sur la base d'études statistiques.
- La « vision de jour » est bien adaptée à la luminosité ambiante usuelle ; le maximum de sensibilité de la courbe $V(\lambda)$ se situe à 555 nm.
- Depuis 1978 le raccordement entre les deux systèmes d'unités est basé sur la vision de jour de l'œil standard au maximum de la courbe $V(\lambda)$: 683 lumen \leftrightarrow 1 watt pour λ = 555 nm .


$$F_{l}(\lambda) = F_{e}(\lambda) \times K_{m} \times V(\lambda)$$
 avec $K_{m} = 683 \, lm.W^{-1}$

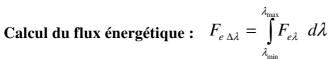
Exemple: Diode laser rouge usuelle à 650 nm (lecture de code barre, pointeur, etc.)

- puissance à l'émission $F_e = 2 \text{ mW}$
- rendement de conversion en puissance $\eta = 0.25 = 25 \% = F_e / P$
- consommation électrique $P = F_e / \eta = 8 \text{ mW}$.
- lecture sur la courbe de vision de jour à 650 nm, soit V(650 nm) = 0.11 (monochromatique)
- flux lumineux $F_1(\lambda_r) = F_e(\lambda_r) \times K_m \times V(\lambda_r) = 0.002 \times 683 \times 0.11 = 0.150 \text{ lm}$ (lumen)
- efficacité énergétique de la lumière $\eta_L = F_1 / P_{alim} = 0.150 / 0.002 = 75 \text{ lm.W}^{-1}$

Sensibilité spectrale relative $V(\lambda)$ en vision de jour de l'œil standard CIE échelle linéaire : lecture facile entre 470 et 650 nm

Sensibilité spectrale relative $V(\lambda)$ en vision de jour de l'œil standard CIE échelle log : lecture facile aux limites (violet, rouge)

1.3- Cas d'une lumière monochromatique


- Identifier la valeur particulière λ_{ex}
- Lire la valeur correspondante $V(\lambda_{ex})$ sur le graphe le plus pratique
- Calculer : $F_{l}(\lambda_{ex}) = F_{e}(\lambda_{ex}) \times K_{m} \times V(\lambda_{ex}) \text{ en lumen, connaissant } F_{e}(\lambda_{ex}) \text{ en W}$ $F_{e}(\lambda_{ex}) = F_{l}(\lambda_{ex}) / (K_{m} \times V(\lambda_{ex})) \text{ en watt, connaissant } F_{l}(\lambda_{ex}) \text{ en lm}$

1.4- Cas d'une lumière polychromatique à spectre continu : compliqué!

Dans le cas d'un rayonnement à spectre continu, l'information doit d'abord être connue en détail, par exemple par le graphe du **flux énergétique spectrique** $F_{e\lambda} = \frac{dF_e}{d\lambda}$ en W.m⁻¹.

On peut disposer pour $F_{e\lambda}$ d'une formule d'origine théorique ou de tableau de valeurs d'origine expérimentale (mesure par un spectromètre).

Exemple : lumière émise par une lampe halogène assimilée à un corps noir à 4550°C (émission préférentielle dans l'infrarouge, un peu dans le visible).

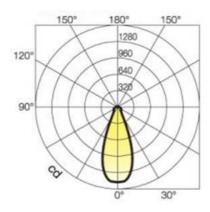
flux rayonnée (en W) dans la partie du spectre

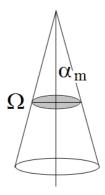
mesuré par la sonde (l'intégrale correspond à la

surface sous la courbe dans la plage de λ de mesure de la sonde)

Calcul du flux lumineux:
$$F_{l} = \int_{\lambda \text{ visible min}}^{\lambda \text{ visible max}} dF_{l\lambda} = \int_{\lambda \text{ visible min}}^{\lambda \text{ visible max}} F_{e\lambda} \times K_{m} \times V(\lambda) \ d\lambda$$

$$F_l pprox \sum_{k=0}^{k_{\max}} F_{e\lambda}(\lambda_k) \times K_m \times V(\lambda_k) \times \delta\lambda$$
 où on découpe la bande visible en k_{\max} éléments de largeur $\delta\lambda$, chacun étant supposé quasi-monochromatique à $\lambda_k = \lambda_{\min} + k \times \delta\lambda$


2- Sources de lumière en émission : Intensité énergétique (en W.sr-1) et lumineuse (en cd candela)


2.1- Rappel: angle solide

Exemple: Spot halogène dichroïque OSRAM Decostar 51 ECO 50 W 12 V 36°

Emission préférentielle dans un cône de demi-angle au sommet $\alpha_m = 36^{\circ}/2 = 18^{\circ}$

L'ouverture du cône est mesurée par l'angle solide $\Omega(\alpha_m) = 2\pi(1-\cos\alpha_m)$

Soit $\Omega = 2\pi (1 - \cos (18^{\circ})) = 2\pi \times 0.0489 = 0.307 \text{ sr}$ stéradian

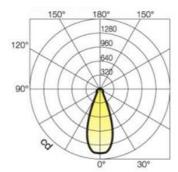
2.2- Intensité énergétique et lumineuse

- Intensité d'une source dans une direction donnée: flux issu de la source par unité d'angle solide $dF_s = I d\Omega_s$ ou $I = \frac{dF_s}{d\Omega}$
- En radiométrie, le flux est en W et l'intensité énergétique I_e est mesurée en W.sr⁻¹
- En photométrie, le flux lumineux est en lumen et **l'intensité lumineuse** I₁ est en **candela** cd (≈ lm.sr⁻¹)

Historiquement 1 cd est l'intensité lumineuse produite par une flamme de bougie... L'intensité lumineuse (en candela) est l'une des sept grandeurs primaires du système international d'unités SI: m, kg, s, A, K, mol et cd

- Indicatrice d'intensité : courbe en coordonnées polaires décrivant la distribution de I pour la source en fonction d'un ou deux angles pertinents.
- Flux émis dans un cône d'angle solide $\Omega_{\rm s}$ $F = \int_{\Omega_{\rm s}} I(\theta) d\Omega$

2.3- Cas « simple » d'une source « isotrope » ou « quasi isotrope »


- **Isotrope** = « identique dans toutes les directions » = « indépendant de la direction » (donc des angles concernés).
- Source isotrope : pour toute direction I(θ) = I₀ = constante
 → Surface indicatrice : sphère centrée sur le point source

$$F = \int_{\Omega_s} I(\theta) d\Omega = \int_{\Omega_s} I_0 d\Omega = I_0 \int_{\Omega_s} d\Omega = I_0 \times \Omega_s$$

Exemples:

Cas de la « boule » solaire et de sa surface d'émission sphérique.

Cas du spot halogène §2.1

- Pour toutes les directions, l'émission solaire est supposée isotrope. Le flux total émis par la « boule » solaire dans tout l'espace est donc $F_{\text{soleil}} = 4\pi I_{\text{soleil}}$
- Si on simplifie la courbe d'émission du spot en la supposant être en forme de « part de tarte », cela revient à supposer la source isotrope. I ≈ constante dans l'angle solide d'émission et I = 0 en dehors.

Product datasheet

DECOSTAR 51 ECO 50 W 12 V 36° GU5.3

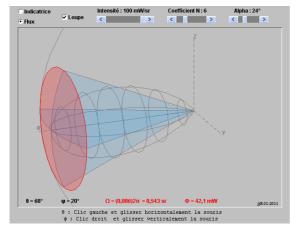
DECOSTAR 51 ECO | Halogen dichroic reflector lamps with 51 mm diameter

Electrical data

Nominal wattage	50 W
Nominal voltage	12 V
Rated wattage	50 W
Power factor λ	1.00
Energy consumption	53 kWh/1000h

Light technical data

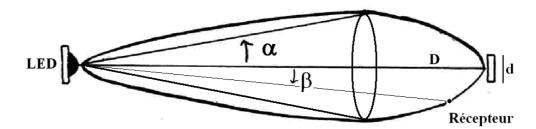
Nominal useful luminous flux 90°	870 lm
Luminous intensity	2850 cd
Beam angle	36 °
Color temperature	3000 K
Light color as per EN 12464-1	Warm White
Color rendering index Ra	100


- Angle solide $\Omega_{\rm spot} = 2\pi (1 \cos (18^{\circ})) = 0.307 \, {\rm sr}$ stéradian
- Intensité lumineuse $I_1 = 2850 \text{ cd}$
- Calcul du flux lumineux émis en supposant I ≈ constante dans l'angle solide d'émission
- \rightarrow F₁ \approx I₁ \times Ω_{spot} \approx 2850 \times 0.307 \approx 876 lm à comparer au flux nominal (écran perpendiculaire à la direction de la lumière) : 870 lm. L'hypothèse est donc réaliste.

2.4- Cas d'une source non isotrope :

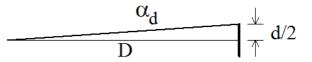
En dehors de l'hypothèse « isotrope » les calculs détaillés de flux peuvent se compliquer.

Exemple: émission directive d'une télécommande


Une télécommande utilise une LED IR à $\lambda = 900$ nm pour émettre ses informations. Intensité lumineuse $I_1 = 0$ cd et flux lumineux total émis $F_1 = 0$ lm car IR non visible!

Cette LED possède un diagramme de rayonnement en intensité qui présente une symétrie de révolution autour de l'axe.

 $I(\beta) = I_0 (\cos \beta)^n$ avec un facteur n = 6 et $I(\beta = 0) = I_0 = 100$ mW.sr⁻¹ dans l'axe.


$$F_e = \int_{\Omega_s} I(\theta) d\Omega = \int_{\Omega_s} I_0 \left[\cos(\beta) \right]^n d\Omega = \dots \rightarrow F_e = 2\pi I_0 \frac{1 - (\cos \alpha)^n}{7}$$

(les détails du calcul sont non exigibles ; ils sont proposés à la fin du document pour les amateurs d'intégrales)

Le flux énergétique total émis par cette LED en mW dans le demi-espace avant ($\alpha = \pi/2$)

$$F_{e \ 1/2 espace} = 2\pi I_0 \frac{1 - (\cos(\pi/2))^7}{7} = \frac{2\pi I_0}{7} = \frac{2\pi \times 0.1}{7} = 90 \, mW$$

On pointe cette télécommande vers un détecteur de diamètre d = 10 mm situé sur la TV à D = 5 m de distance.

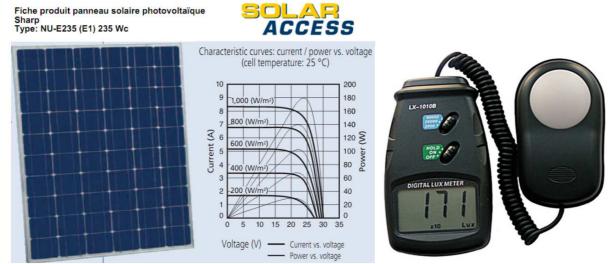
Le cône d'émission vers le détecteur à un demiangle au sommet :

$$\alpha_d = \arctan\left(\frac{d/2}{D}\right) = \arctan\left(\frac{0.005}{5}\right) \approx 0.001 rd$$

 $\cos(\alpha_d) \approx 1 - \frac{\alpha_d^2}{2} \approx 0.9999995$ très proche de 1 (développement limité au 2^{ième} ordre)

Le flux émis en direction du détecteur et reçu par celui-ci est :

$$F_{d\acute{e}tecteur} = 2\pi I_0 \frac{1 - (\cos \alpha_d)^7}{7} \approx \frac{2\pi \times 0.1}{7} \times (1 - (0.9999995)^7) \approx 0.31 \mu W$$


Soit $0.31 \cdot 10^{-6} / 90 \cdot 10^{-3} = 3.5 \cdot 10^{-6}$ soit seulement 3 à 4 millionième de ce qui est émis...

Sur ce petit cône, on pourrait considérer que $I(\beta) \approx I_0 \; \text{pour} \; \Omega_d \approx 2\pi \; (1-\cos\alpha_d) \approx 3.1 \; 10^{\text{-}6} \; \text{sr}$ Donc $F_{\text{détecteur}} \approx \Omega_d \times I_0 \approx 3.1 \; 10^{\text{-}6} \times 0.1 \approx 0.31 \; \mu\text{W}$

Une source quelconque émettant dans un angle solide minuscule est quasi-isotrope sur cet angle!

3- Surface éclairée : éclairement énergétique E_e (en W.m⁻²) et lumineux (en lux : lx)

3.1- Exemples: mesures en W.m-2 ou en lux

Caractéristiques d'un panneau solaire en fonction de l'éclairement reçu – luxmètre pour photographe

3.2- Eclairement énergétique (en W.m-2) et lumineux (en lx)

- L'éclairement caractérise le flux reçu par unité de surface du récepteur
- En **radiométrie**, éclairement énergétique $E_e = \frac{dF_e}{dA_r}$ en **W.m**⁻² mesuré avec un **radiomètre**.
- En **photométrie**, éclairement lumineux $E_l = \frac{dF_l}{dA_r}$ en **lux** (lx \approx lm.m⁻²) mesuré avec un **luxmètre** (pas un « photomètre »!).
- L'éclairement moyen est le rapport du flux global reçu divisé par la surface éclairée A_r.

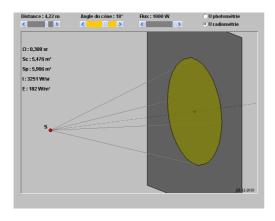
$$E_{moyen} = \frac{F_{globalsurA}}{A_r} = \frac{\iint dF}{A_r} = \frac{\iint E(P) dA}{A_r} \quad \text{en W.m}^{-2} \text{ ou lx selon le cas}$$

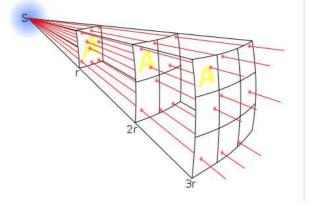
Ce qui compte est la surface éclairée.

Exemple : une surface de 1 cm² recevant un flux de 5 mW a un éclairement moyen de $5 \cdot 10^{-3} / 10^{-4} = 50 \text{ W.m}^{-2}$

- Pour des lumières convergeant sur la même surface, les flux s'additionnent
- et en un point de réception donné, les différents éclairements reçus s'additionnent.

(pas d'interférences optiques avec des lampes différentes cf.S3).


Stade de la Route de Lorient, à Rennes


3.3- Eclairement par une source ponctuelle d'intensité I

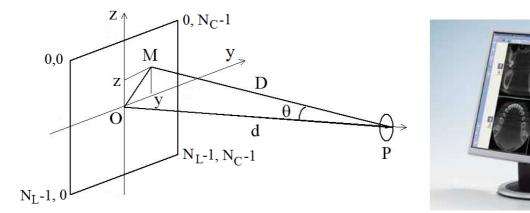
- Source quasi-ponctuelle d'intensité I dans la direction concernée
- Propagation en **ligne droite** (sans lentille ou autre) dans un milieu sans pertes
- Surface dA_r à la distance D de la source
- Normale à dA_r faisant un angle Θ_r avec le rayon issu de la source (cos Θ_r d A_r est la surface projetée ou apparente)
- dA_r vue depuis la source sous l'angle solide $d\Omega_s$

Flux reçu par la surface
$$dA_r \rightarrow dF_r = I d\Omega_s = I \frac{dA_r \cos \Theta_r}{D^2}$$

L'éclairement de cette surface est
$$E_r = \frac{dF_r}{dA_r} = I \frac{\cos \Theta_r}{D^2}$$
. loi de **Bouguer**

Symboliquement, on constate une diminution du flux avec l'éloignement avec un facteur 1²= 1, $2^2 = 4$ ou $3^2 = 9$ pour les distances D = r, 2r, 3r

3.4- Eclairement par une surface d'émission Exemple : éclairement lumineux produit par un écran d'ordinateur


De façon générale, le calcul fait intervenir des intégrales de surfaces bien compliquées !

Dans cet exemple, en travaillant avec un ensemble de points lumineux, le calcul reste « élémentaire » car uniquement basé sur le théorème de Bouguer et l'addition des éclairements.

Soit un écran affichant une image numérique comprenant N_L lignes et N_C colonnes.

Chaque pixel est un carré de coté p.

L'écran illuminé a une surface $S= N_L \times N_C \times p^2$

Informatiquement, une image est un tableau contenant pour chacun des pixels les trois coordonnées numériques entières (n, m, q):

- * $0 \le n < N_C$ n° de colonne : position sur l'horizontale
- * $0 \le m < N_L$ n° de ligne : position sur la verticale
- * $0 \le q(n,m) < Q_m$ « Intensité » informatique du pixel de coordonnées (n, m), c'est-à-dire une valeur dans l'échelle de gris entre 0 et Q_m .

Soit une image de Webcam basique (codée sur 8 bits) : $N_C = 640$, $N_L = 480$, $Q_m = 255 = 2^8-1$

Pour le pixel situé en M, de coordonnées : y_n, z_m, I_{nm} on a :

- * $y_n = (n N_C/2) \times p$ abscisse horizontale
- * $z_m = (N_L/2 m) \times p$ ordonnée verticale
- * $I_{nm} = I_{max} \times q(n,m) / Q_m$ pour le pixel situé aux coordonnées (n, m); I_{max} est l'intensité lumineuse max possible (lorsque $q = Q_m$)

Calcul de l'éclairement reçu sur la pupille de l'œil située au un point P, distant de d et situé sur l'axe normal au centre de symétrie de l'image sur l'écran :

On lit sur la figure présentant un triangle rectangle en O les relations géométriques :

$$D^2 = d^2 + y_n^2 + z_m^2$$
 (car $OM^2 = y_n^2 + z_m^2$) et

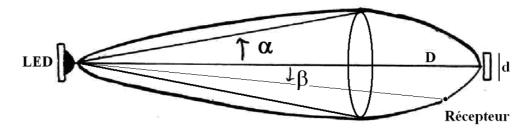
$$\cos \vartheta = \frac{d}{D} = \frac{d}{\sqrt{d^2 + y_n^2 + z_m^2}}$$

Le **théorème de Bouguer** donne la contribution de chaque « pixel ponctuel » :

$$E_{nm} = I_{nm} \frac{\cos \vartheta}{D^2} = I_{nm} \times \frac{1}{d^2 + y_n^2 + z_m^2} \times \frac{d}{\sqrt{d^2 + y_n^2 + z_m^2}} = \frac{I_{nm} \times d}{\left(d^2 + y_n^2 + z_m^2\right)^{3/2}}$$

Pour l'**image numérique** complète (en échelle de gris), il suffit de sommer les contributions de chacun des pixels :

$$E(P) = \sum_{n=0}^{N_C - 1} \sum_{m=0}^{N_L - 1} E_{nm} = \sum_{n=0}^{N_C - 1} \sum_{m=0}^{N_L - 1} I_{nm} \frac{d}{(d^2 + y_n^2 + z_m^2)^{3/2}}$$


Pour un écran couleur, il faut refaire le même calcul pour chacune des trois couleurs RVB et sommer les trois contributions en tenant compte de la sensibilité de l'œil à chacune de ces trois couleurs (Rouge, Vert, Bleu).

Complément:

Calcul détaillé du flux pour une LED §2.4 (calcul bien sûr non exigible)

Exemple de calcul d'intégrale par changement de variable

 $I(\beta) = I_0 (\cos \beta)^n$ avec un facteur n = 6 et $I(\beta = 0) = I_0 = 100$ mW.sr⁻¹ dans l'axe.

$$F_e = \int_{\Omega_s} I(\theta) d\Omega = \int_{\Omega_s} I_0 \left[\cos(\beta) \right]^n d\Omega = \int_0^\alpha I_0 \left[\cos(\beta) \right]^n \times 2\pi \sin\beta \ d\beta$$

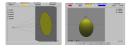
$$F_e = -2\pi I_0 \int_0^\alpha [\cos(\beta)]^n \times (-\sin\beta \ d\beta) = -2\pi I_0 \int_0^\alpha [\cos(\beta)]^n d\cos\beta$$

$$F_e = -2\pi I_0 \left[\frac{(\cos \beta)^{n+1}}{n+1} \right]_0^{\alpha} \rightarrow \left[F_e = 2\pi I_0 \frac{1 - (\cos \alpha)^{n+1}}{n+1} \right] \text{ avec } n = 6$$

Sources des figures et des images :

Copies d'écran du logiciel de TP S3 B&Wspec 3.26 http://www.bwtek.com/

http://www.zeblog.com/blog/uploads/m/marlenesasseur/soleil-couv.jpg


http://subaru2.univ-lemans.fr/enseignements/physique/02/optigeo/diode.html

Crédit personnel

http://s1.e-monsite.com/2009/06/27/10/78658434stade2-jpg.jpg

 $\frac{http://subaru2.univ-lemans.fr/enseignements/physique/02/optigeo/grandphoto.html}{http://subaru2.univ-lemans.fr/enseignements/physique/02/optigeo/photoecran.html}$

http://fr.wikibooks.org/wiki/Photographie/Photom%C3%A9trie/Calculs_photom%C3%A9triques_usuels

http://www.targetti.fr/products/65283/mondial

http://www.osram.fr/osram_fr/produits/lampes/lampes-halogenes/decostar/decostar-51-eco/index.jsp?productId=ZMP_57742

http://www.solaraccess.fr/resources/solarmodule/datasheets/Sharp_NU-S0E3E_NU-180(E1) 180Wp NU-S5E3E NU-185(E1) 185Wp EN.pdf

http://www.lyon-outil.com/578-850-thickbox/luxmetre-digital-1010kt.jpg

 $\underline{http://www.fayneljost.com/img/ecran-ordinateur.jpg}$

Sommaire

RADIOMETRIE & PHOTOMETRIE	1
0- Grandeurs radiométriques & photométriques	1
1- Flux énergétique et lumineux : F_e en $W,\;F_l$ en lm (lumen) Correspondance entre les systèmes d'unité	és 1
2- Sources de lumière en émission : Intensité énergétique (en W.sr-1) et lumineuse (en cd candela)	4
3- Surface éclairée : éclairement énergétique Ee (en W.m-2) et lumineux (en lux : lx)	7
Sources des figures et des images :	11
Sommaire	